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Abstract: Time-marching of turbulent flow fields is computationally expensive using traditional
Computational Fluid Dynamics (CFD) solvers. Machine Learning (ML) techniques can be used as
an acceleration strategy to offload a few time-marching steps of a CFD solver. In this study, the
Transformer (TR) architecture, which has been widely used in the Natural Language Processing (NLP)
community for prediction and generative tasks, is utilized to predict future velocity flow fields in
an actuated Turbulent Boundary Layer (TBL) flow. A unique data pre-processing step is proposed
to reduce the dimensionality of the velocity fields, allowing the processing of full velocity fields
of the actuated TBL flow while taking advantage of distributed training in a High Performance
Computing (HPC) environment. The trained model is tested at various prediction times using the
Dynamic Mode Decomposition (DMD) method. It is found that under five future prediction time
steps with the TR, the model is able to achieve a relative Frobenius norm error of less than 5%,
compared to fields predicted with a Large Eddy Simulation (LES). Finally, a computational study
shows that the TR achieves a significant speed-up, offering computational savings approximately
53 times greater than those of the baseline LES solver. This study demonstrates one of the first
applications of TRs on actuated TBL flow intended towards reducing the computational effort of
time-marching. The application of this model is envisioned in a coupled manner with the LES solver
to provide few time-marching steps, which will accelerate the overall computational process.

Keywords: turbulent boundary layer; transformer; machinelearning; dynamicmodedecomposition;
flow dynamics;time-marching; activedragreduction; spanwise traveling transversal surface waves

MSC: 68T07; 76F40

1. Introduction

Turbulent flows are encountered in many scientific and engineering problems, such as
in aerospace, weather sciences, and biophysical systems. Computational Fluid Dynamics
(CFD) simulations to study the turbulent dynamics, need to address multiscale flow features
due to the interactions of strong and chaotic fluctuations over a wide range of scales. As the
flow REYNOLDS number increases, even smaller scales are developed in the energy cascade
as the inertial force overwhelms the viscous force, leading to large scale separation in
both space and time. Therefore, fine mesh resolutions are required to obtain accurate
solutions. Evidently, time-marching of such turbulent flows with high-fidelity numerical
techniques, such as Direct Numerical Simulation (DNS) and wall-resolved Large Eddy
Simulation (LES), are prohibitively expensive for many practical use cases. Alternatively,
Machine Learning (ML)-based methodologies can potentially offer significant speed-ups
for the estimation of turbulent fields [1,2]. Although fully replacing the CFD solver for all
time integration steps with ML or a data-driven model is challenging and could lead to
the accumulation of errors, ML can still offer computational efficiency through offloading
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of a few steps. In such a workflow, the idea is to use ML for acceleration rather than as
a replacement for the underlying CFD solver. ML techniques have already been widely
explored in CFD for various such applications, for instance in model-order reduction [3],
super-resolution [4], and also for temporal predictions [5], among many other efforts [6].

For unsteady problems, the Recurrent Neural Network (RNN) architecture is well
suited to capture and model temporal dynamics. An RNN consists of hidden layers with a
feedback loop, where each layer has an internal state vector, which is combined with the
input vector to obtain the output. This output from a hidden layer is fed into the next layer,
leading to the recurrent architecture, which allows the processing of time signals. How-
ever, RNNs suffer from vanishing and exploding gradients, as described in Bengio et al. [7].
Initial solutions proposed to the gradient problems in RNNs involved techniques such
as gradient clipping, and with truncated backpropagation through time [8] by truncating the
length of backpropagation. In terms of other architectures to improve RNNs, the Long
Short-Term Memory (LSTM) architecture [9], which features the so-called memory cells,
contributed to overcome the vanishing gradient issue, and led to many developments
in temporal predictions. Similar to the development of LSTM, the gating mechanism in
the Gated Recurrent Unit (GRU) [10] also tackled the vanishing gradient issue. In CFD,
both RNNs and LSTMs have been used for temporal prediction, including for turbulent
flows [11,12]. Although the vanishing and exploding gradient issues are addressed by these
developments, training such networks is usually slow as the network relies on sequential
computation, making it difficult to benefit from parallel systems for acceleration. This
is a major drawback since the current ML applications are compute- and data-intensive,
where parallel architectures, especially with accelerators such as Graphical Processing
Units (GPUs), need to be exploited. To solve this issue, the Transformer (TR) architecture
introduced in Vaswani et al. [13] employs the attention mechanism to entirely avoid the
recurrence relationship to deduce global dependencies. This model relies entirely on a
self-attention mechanism (explained in further detail in Section 3), inherently allowing
parallel training. TRs have already been widely exploited in the Natural Language Process-
ing (NLP) community [14,15], demonstrating excellent generative and predictive potential.
Owing to their large uptake in the NLP community and also in the computer vision [16],
there have been developments in the scientific domain as well [17,18].

In CFD, the use of TRs is still at a relatively early stage compared to other ML ar-
chitectures. In one of the first applications [19], a TR is coupled to a Generative Adver-
sarial Network (GAN) to generate turbulent inflow conditions for Turbulent Boundary
Layer (TBL) simulations. For the prediction of temporal dynamics in a Reduced Order Mod-
elling (ROM)-based framework, TRs have been used to time-march compressed representa-
tions of the flow field. In Hemmasian and Barati Farimani [20], an AutoEncoder (AE)-based
network is used for compression, while, more recently, a β-variational autoencoder network
is used with a TR to predict the encoded fields [21], where also the superiority of TR over
LSTM is demonstrated. However, compressed representations tend to underestimate the
high frequency components during reconstruction and require careful treatment of the
hyperparameters that define the network [22]. Nonetheless, these investigations show
that TRs can outperform other prediction methods for CFD applications. Also for long
temporal sequences, TR has shown excellent prediction ability [19], whereas LSTMs have
been shown to reconstruct long-term dependencies only when separately predicting modes
corresponding to different frequency ranges [23].

Inspired by these developments surrounding the use and superiority of TRs in esti-
mating CFD fields, this study analyzes the capability of TRs to predict the full velocity
field in an actuated TBL problem. For this purpose, an encoder–decoder configuration of
a TR architecture is employed. To limit the number of features that the TR model needs
to predict, thus reducing the complexity of the self-attention mechanism, the inputs are
reshaped into smaller cubic sub-domains. This also allows handling of non-uniform input
shapes encountered in CFD simulations where the computational domain changes. The
developed model is envisaged to be integrated into a coupled setup including the baseline
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LES solver. The idea is to offload a few time-marching steps of the LES solver, which allows
to achieve significant computational speed-up. The number of time steps over which the
TR model is applicable for time-marching offload is based on the accuracy of the model
over different prediction time steps. This is analyzed in this study with the Dynamic Mode
Decomposition (DMD) method [24–26].

This manuscript demonstrates for the first time, the use of TR to achieve speed-
up in time-marching actuated TBL fields. With the use of TR in an envisioned hybrid
workflow coupled to a CFD solver, this manuscript provides a methodology to speed-up
the computational time of time-marching turbulent fields with an ML-assisted solution,
while retaining accuracy similar to the baseline solver. The contribution of this study is
the development of a methodology using a TR architecture to offload time-marching steps
of a CFD solver, which leads to massive savings in computational resources. To the best
knowledge of the authors, this is the first application of TRs to time-marching of an actuated
TBL flow problem.

The manuscript is structured as follows. Section 2 provides an overview of the
computational setup, details on the numerical solver, and the associated data that is
employed for training the TR model. The TR architecture and methodology of the training
are discussed in Section 3. The performance of the TR model is shown and analyzed in
Section 4. Finally, Section 5 concludes the manuscript with a summary of the findings and
provides directions for future research.

2. TBL Problem Formulation

Since the aviation sector accounts for a significant share of energy demand and associ-
ated greenhouse gas emissions, and as political goals and rising energy costs pose envi-
ronmental and economic challenges for aircraft, aerodynamic improvements are needed.
A promising technique to actively and therefore adaptively reduce the aerodynamic vis-
cous drag are spanwise traveling transversal surface waves to manipulate the near-wall
turbulent boundary layer [27].

As a first step approximation to more realistic and computationally more expensive
application scenarios such as aircraft wings, a CFD model based on a validated zero-
pressure gradient flat plate configuration plate is selected to study the underlying physics
and potential of this active drag reduction technique. For that purpose, wall-resolved
LES is performed using the in-house CFD solver m-AIA (https://git.rwth-aachen.de/
aia/m-AIA/m-AIA, accessed on 25 September 2024) [28–30], depicted in Figure 1 for the
actuated case. The physical domain of the flat plate model is shown for the actuated
case, where the dimensions in the Cartesian directions are Lx, Ly, and Lz. The actuation
parameters of the spanwise traveling wave are the wavelength λ, the time period T and
the amplitude A. At the inflow of the domain, the Reformulated Synthetic Turbulence
Generation (RSTG) method is used to initiate a TBL flow [31]. The onset of the surface
actuation, analyzed in Albers et al. [28], Fernex et al. [29], is located at x0, where a fully
developed TBL is established. The surface area Asurf for the integration of the wall-shear
stress τw is shaded in gray. Periodic Boundary Conditions (BC) are used in the spanwise
direction z, characteristic outflow conditions [32] are applied on the downstream and upper
boundaries, and the no-slip condition is imposed on the wall [28].

For the solver, the unsteady compressible Navier–Stokes equations in the Arbitrary
Lagrangian-Eulerian (ALE) formulation for time-dependent body-fitted deformable meshes
are solved with the structured part of m-AIA. A second-order accurate Finite Volume (FV)
approximation of the governing equations is used in which the inviscid fluxes are com-
puted by the Advection Upstream Splitting Method (AUSM) using a Monotonic Upstream-
Centered Scheme for Conservation Laws (MUSCL) to reconstruct the cell-center values. The
viscous fluxes are discretized by a modified cell-vertex scheme at second-order accuracy.
The time integration is performed via a five-stage Runge–Kutta scheme with second order
accuracy. Additional volume fluxes are determined to satisfy the Geometry Conservation
Law (GCL). According to the Monotonically Integrated Large Eddy Simulation (MILES)

https://git.rwth-aachen.de/aia/m-AIA/m-AIA
https://git.rwth-aachen.de/aia/m-AIA/m-AIA
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approach, the subgrid dissipative scales of the LES are implicitly modeled by the numerical
dissipation of the AUSM scheme [28].

z

y

x

Lx

Ly

Lz

Periodic BC
TBL via RSTG at the inflow

Characteristic
outflow
condition

No-slip
condition

λ

A

T
x0

Figure 1. Sketch of the CFD domain with the three-dimensional actuated TBL flow. The actuation of
the wall is shown with a spanwise wave, where a no-slip boundary condition is imposed. The gray
area indicates the region of interest where the TBL data is extracted.

For the three-dimensional turbulent flow, the wave parameters are non-dimensionalized
and given in inner units (•)+ based on the friction velocity uτ and the kinematic viscosity
ν, both at x0 averaged in the spanwise direction. The actuation is characterized by the non-
dimensional actuation parameters, wavelength λ+ = λuτ/ν, amplitude A+ = Auτ/ν and
time period T+ = Tu2

τ/ν, such that the wall normal coordinate of the spanwise traveling
transversal surface wave is described by Equation (1). The piecewise-defined function
g(x+) ensures a smooth spatial transition in the streamwise direction from the non-actuated
to the actuated surface area and vise versa, which is given by:

y+wall

(
x+, z+, t+|λ+, T+, A+

)
= g(x+) A+cos

(
2π
λ+

z+ +
2π
T+

t+
)

. (1)

In previous studies, 80 LESs, i.e., one reference/non-actuated and 79 actuated cases,
were performed for grid-like distributed actuation parameter combinations within the
bounds [200, 20, 10]T ≤ [λ+, T+, A+]T ≤ [3000, 120, 78]T [28,29].

The flow conditions are predefined by the momentum thickness-based REYNOLDS

number Reθ = u∞θ/ν = 1,000 at x0 and the MACH number M = u∞/a = 0.1 using the
free stream velocity u∞, the momentum-based boundary layer thickness θ, the kinematic
viscosity ν, and the ideal gas speed of sound a of air. The mesh resolution is ∆x+ = 12
in the streamwise, ∆y+wall = 1 in the wall-normal direction gradually coarsening off the
wall up to ∆y+edge = 16 at the boundary layer edge, and ∆z+ = 4 in the spanwise direction.
This yields a DNS-like resolution near the wall, rendering these simulations wall-resolved
LESs. Further details on the numerical method, the computational setup, validation of the
LES, BC and simulation data points including mesh independence studies and flow field
statistics can be found in Albers et al. [28]. For the purpose of this investigation with the TR
model, a high-sampling version of the actuated dataset is generated and used for training,
where snapshots in every 24 solver time-steps are stored exemplarily for the actuation
parameter combination of λ+ = 1,000, A+ = 40 and T+ = 40.

3. TR Model Architecture

The TR model is required to provide temporal predictions of velocity fields of the TBL
flow. As mentioned in Section 1, this is achieved through an encoder–decoder configuration
of a TR model that has been adapted from Wu et al. [33]. The architecture is shown in
Figure 2, where the number of encoder and decoder layers, and attention heads are chosen
after manually tuning these hyperparameters, such that the loss is minimized. Also the
input layer of the network is configured such that the non-uniform velocity field tensors
can be read as input to the transformer. The encoder consists of an input layer defined
by a fully-connected network and a stack of six encoding layers. Positional encoding



Mathematics 2024, 12, 2998 5 of 13

is defined by sinusoidal functions. The six layers consist of a self-attention and a fully
connected feed-forward layer, each followed by a normalization layer. The self-attention
mechanism allows to capture dependencies between tokens, which are the velocity field
tensors in the temporal direction in this context. The TR model obtains this dependency
by representing each token in the form of query (Q), key (K), and value (V) vectors. These
vectors are used to compute attention scores, which represents the relevance of a token
with respect to other tokens, thus enabling the capture of not only short-term, but also
long-term dependencies. Further details on this can be found in Vaswani et al. [13]. The
decoder has a fully connected input layer, again followed by six decoder layers, and a
linear mapping to the target sequence at the output layer. In the decoder layers, there is
an additional layer that applies self-attention to the encoder outputs. To ensure that the
decoder only sees information from the previous time steps, look-ahead masks are applied.
The loss function for training the model consists of a Mean-Squared-Error (MSE) term,
LMSE, and an additional gradient loss term, Lgrad, defined by the first-order gradients of the
velocity field. For example, if utn and ũtn are the target and TR-predicted velocity tensors
at time instance tn, and the velocity gradients are ∂utn /∂x, ∂utn /∂y, and ∂utn /∂z in three
directions x, y, and z, the loss Ltotal is defined by the following:

Ltotal = α · 1
du

du

∑
i=1

(utn − ũtn)
2 + β · 1

du

du

∑
i=1

((∂utn

∂x
− ∂ũtn

∂x

)2
+

(∂utn

∂y
− ∂ũtn

∂y

)2
+
(∂utn

∂z
− ∂ũtn

∂z

)2
)

, (2)

where du is the dimension of the velocity tensor summed over all the directions, and
α and β are the weights assigned to LMSE and Lgrad, and α = 1.0 and β = 0.06 [34].
To avoid Lgrad dominating LMSE, it is scaled in the first 100 epochs such that Lscaled

grad =

Lgrad/10⌈log(Lgrad/LMSE)⌉.
Assuming that the training dataset consists of velocity field time instances, a subset

sequence of ut1 , ut2 , . . . , utm serves as the encoder input, where m is the encoder sequence
length. This is shown in Figure 2. In this case, the decoder input consists of velocities
at time instances utm , . . . , utn−1 , and the decoder outputs the velocities at time-instances
utm+1 , . . . , utn , where n − m is the target sequence length. For the investigated TBL problem,
these time sequences of the velocity field tensors vary in shape. Specifically, the width of the
computational domains used as training data for the TR varies in the spanwise (z) direction.
To resolve the non-uniform samples, the velocity field tensors are reshaped to smaller cubic
subdomains. In this case, these sub-domains have a dimension of eight computational
cells in each direction. This sub-domain size is a hyperparameter, which could influence
the accuracy of the developed model. In the present investigation, this hyperparameter is
tuned manually. Other cubic sub-domain sizes of four and 16 are also tested, but these lead
to higher errors. Sub-domain sizes of more than 16 are not considered, as training costs
increase and also the complexity of self-attention increases. Importantly, this reshaping
operation allows to limit the number of features that the TR model needs to predict, which
significantly reduces the computational complexity of the self-attention mechanism. It is
also observed that the TR performance in terms of accuracy is significantly worse when the
full velocity field is predicted.
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Figure 2. Architecture of the TR model that is used for temporal predictions (adapted from
Wu et al. [33]). An encoder–decoder configuration of a transformer model is used, where the in-
put to the encoder are the three-dimensional velocity field tensors, and the decoder outputs the
time-marched velocity fields.

Furthermore, 16 attention heads are employed in the network architecture. For regular-
ization to each of the encoder and decoder layers, a dropout value of 0.3 is used. The Adam
optimizer [35] is used for training for 1,700 epochs. The learning rate is scaled linearly with
the number of workers (in this case, GPUs) that are used for the training. This is done to
preserve the accuracy of the model when dealing with large batch sizes encountered in large-
scale distributed training, which is a known issue in ML [36,37]. The distributed trainings
are conducted with the DeepSpeed framework (https://github.com/microsoft/DeepSpeed,
accessed on 25 September 2024), which is provided by the open-source library AI4HPC
(https://ai4hpc.readthedocs.io/en/latest/, accessed on 25 September 2024) for scaling
ML workloads on High Performance Computing (HPC) systems [38]. The library includes
parsing options, which allows configuring the training parameters of the network. For train-
ing the TR model, the size of the cubic sub-domains is an important hyperparameter, see
discussion above. Another important parameter to consider is the seeding of the network,
which is also used to allow deterministic runs. This can easily be specified in AI4HPC with
the nseed argument. For exploiting the HPC environment used for training the model, also
multiple workers with nworker and prefetching of data with prefetch argument are used.
All of these options can be seamlessly specified as input parser arguments to the library [38].
The TR model (https://gitlab.jsc.fz-juelich.de/CoE-RAISE/FZJ/ai4hpc/ai4hpc/-/blob/
master/Cases/DS_ATBL_TR.py, accessed on 25 September 2024) and the training data [39]
are available open-source.

4. Results and Discussion

This section highlights the results obtained with the TR model and the TBL dataset de-
scribed above. The time-marching capabilities of the TR model are evaluated by increasing
the predicted future time steps. For analyzing the performance of the TR model, 10% of the
entire dataset is used for test purposes, and the results shown in this section refer to this test
dataset. It is to be noted that the convective time for the physical CFD solver time step is
∆tCFDu∞/θ = 1/300, where ∆tCFD is the physical time covered by one CFD solver time step,
u∞ is the far-field velocity outside the boundary layer, and θ is the momentum-based bound-
ary layer thickness at the onset of the actuation at x0. For training the TR model, a dataset
with a high sampling rate is generated, where the velocity fields are stored every 24 physical
CFD solver time steps. Hence, during inference, the convective TR time step in terms of
the convective CFD solver time step is ∆tTRu∞/θ0 = 24 × ∆tCFDu∞/θ0 = 24/300 = 0.08.
As mentioned in Section 3, the TR has a target sequence length of n − m during training,
where each of the steps of the target length corresponds to ∆tTR.

https://github.com/microsoft/DeepSpeed
https://ai4hpc.readthedocs.io/en/latest/
https://gitlab.jsc.fz-juelich.de/CoE-RAISE/FZJ/ai4hpc/ai4hpc/-/blob/master/Cases/DS_ATBL_TR.py
https://gitlab.jsc.fz-juelich.de/CoE-RAISE/FZJ/ai4hpc/ai4hpc/-/blob/master/Cases/DS_ATBL_TR.py
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During inference, the TR can be tested for longer time sequences, as the inference
step runs the model iteratively, such that ũtn+∆tTR

= T (ũtn), where T is the TR model
operator. The implementation of the inference step is available in the AI4HPC repos-
itory (https://gitlab.jsc.fz-juelich.de/CoE-RAISE/FZJ/ai4hpc/ai4hpc/-/blob/master/
Cases/src/networks.py, accessed on 25 September 2024). Exemplary reconstructions pro-
vided by the TR model for the streamwise velocity (u) are shown in Figure 3. Qualitatively,
it can be observed that the velocity fields predicted by the TR are in close agreement with
the LES fields for ∆tTR ≤ 2. The reconstructions above ∆tTR > 10 are worse compared to
∆tTR = 10. The larger flow features are clearly reconstructed by the TR model. However,
for ∆tTR ≥ 5, the discrepancies in the TR-predicted fields are visible, which can be better
observed in the line plots along the right panel. In particular, the values at locations with
sharp gradients are poorly estimated. Since the sharpest gradients generally correspond to
points in the velocity field with extreme values, such behavior with ML-based models can
be expected as ML models with good generalizability capture the mean flow characteristics
better compared to the outliers. However, up to ∆tTR = 2, the line plots are in close agree-
ment. The coefficient of determination (R2) is also computed, and an average R2 ≈ 0.99
is found for ∆tTR ≤ 2, after which it starts to drop. The drop in LMSE, given by the first
term in Equation (2), with increasing ∆tTR is shown in Figure 4, where the R2 scores are
also shown. As expected, a trend of increase in MSE and decrease in R2 is observed with
increasing ∆tTR. Given the reconstruction quality observed in Figure 3c, it can be concluded
that the TR predictions are poor for ∆tTR > 5. However, the time-marching of the TBL flow
up to ∆tTR < 5 already provides high computational speed-up (shown in Section 4.2) with
high accuracy. In terms of a measure to quantify the temporal evolution of the flow that the
TR model is able to provide, ∆tTR = 5 would correspond to a convective time of about 0.40,
which means about 40% of the boundary layer thickness.
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Figure 3. Cross-section of an exemplary prediction by TR of the streamwise velocity (u) component
of the TBL velocity field slice in the wall-normal direction on the i-k plane (Prediction), compared to
the original LES field (Target), where i is the streamwise and k is the spanwise direction. The line plot
on the right panel shows the velocity at the location shown by the red/black line in the scatter plots.
Each subfigure (a–d) represents increasing TR time-steps ∆tTR.
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Figure 4. MSE and R2 score between the LES and TR-predicted velocity fields for different values
of ∆tTR.

To quantitatively analyze the reconstruction ability of the TR, a modal decomposition
of the generated velocity fields is performed in the following Section 4.1. Subsequently,
the computational speed-up achieved with the TR for time-marching the velocity fields is
compared with the LES execution times in Section 4.2.

4.1. Modal Decomposition Analysis

To further analyze and validate the performance of the TR model for predicting
dynamics, the DMD method is used to compare the LES- and TR-predicted fields. DMD
is a data-driven method, extensively used for analyzing dynamical systems, especially
for high-dimensional data. It has been used widely in the field of CFD and turbulent
dynamics to extract coherent structures and understand their temporal evolution [40].
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DMD decomposes the behavior of the system into modes and associated frequencies, which
allow the interpretation of the evolution of the system in terms of the dominant modes.
In particular, for dynamical systems, comparison of the temporal behavior shown by the
LES and the TR-based DMD modes provides an assessment if the generated predictions by
the TR are stable and remain close to the expected behavior. Here, the modal information
extracted from DMD is exploited to measure the accuracy of the TR model with respect
to the baseline LES. The open-source Python package PyDMD [41,42] is used to extract
the modes and their associated eigenvalues. The DMD modes ϕp, p ∈ {LES, TR} and
eigenvalues λp, p ∈ {LES, TR} from the LES and TR fields are compared. Furthermore,
the relative Frobenius norm error of the discrepancy between LES and TR fields, given by

||ϵF,rel || =
||ϕLES||F − ||ϕTR||F

||ϕLES||F
, (3)

is used to quantify the agreement between the DMD modes. The mode dynamics αr(tg) for
mode r at time tg is also shown to compare the temporal coefficients that explain the time
evolution of each mode.

Figure 5 shows a contour plot of the mode shapes derived from the DMD of the
LES and TR fields at ∆tTR = 2. It can be seen that the TR modes are in close qualitative
agreement with the LES modes. The TR-predicted contours are less smooth compared to the
LES contours, but the discrepancy is minimal, and these probably arise from the smallest
flow structures that are not captured by the TR. In order to further analyze the differences,
a quantitative analysis is provided in Table 1 for the dominant mode, where ||ϵ||F,rel , λp,
and αr(tg) are compared for the LES and TR at different values of ∆tTR. It is observed that
for ∆tTR < 5, ||ϵ||F,rel < 5% is obtained, which shows the excellent reconstruction ability of
the TR model. Close agreement between the modes signify that the dominant flow features
are accurately captured by the TR, which are responsible for maximum energy content of
the system. For ∆tTR ≥ 5, the model starts to show worse performance and ||ϵ||F,rel gives
unacceptable values. In terms of λp and αr(tg), the values are in close agreement until
∆tTR < 5. The agreement in the mode dynamics suggests that the dynamic evolution of the
velocity field predicted by the TR agrees closely with the LES fields, thus validating its use
for making temporal predictions.
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Figure 5. Contour plots of the first mode from DMD of the LES (Target Mode, top panel) and of
the TR (Prediction Mode, bottom panel) for the streamwise velocity u (left), wall-normal velocity
v (middle), and the spanwise velocity w (right).
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Table 1. Eigenvalues, mode dynamics, and relative Frobenius norm between the modes of dominant
rank obtained from the DMD of the LES- and TR-predicted velocity fields.

∆tTR 2 3 4 5 8 10 15

||ϵ||F,rel 0.017 0.039 0.030 0.053 0.063 0.082 0.124

λLES 0.9995 0.9961 0.9966 0.9963 0.9965 0.9965 0.9963

λTR 0.9981 0.9952 0.9952 0.9952 0.9952 0.9952 0.9952

α1(t1) − LES 71.37 −71.47 −71.57 −71.51 −71.69 −71.58 −72.16

α1(t1) − TR 71.24 −71.26 −71.38 −71.26 −71.35 −71.20 −71.42

α1(t2) − LES 71.33 −71.19 −71.33 −71.25 −71.44 −71.32 −71.89

α1(t2) − TR 71.11 −70.92 −71.05 −70.92 −71.01 −70.86 −71.07

4.2. Computational Time per Snapshot and Memory Analysis

In this subsection, a comparison of the computational time and memory usage during
inference for the TR and the LES time-marching step with ∆tTR = 1 is provided. While
the training and inference of the TR model is performed on the JURECA system [43],
the TR solver uses the HAWK system (https://www.hlrs.de/de/loesungen/systeme/hpe-
apollo-hawk, accessed on 25 September 2024). Both the systems feature two 64-core AMD
EPYC 7742 Central Processing Units (CPUs) (https://www.amd.com/en/products/cpu/
amd-epyc-7742, accessed on 25 September 2024), whereas the HAWK system consists of
4096 compute nodes. The JURECA-DC used in this work contains 192 accelerated nodes,
where each node contains four NVIDIA A100 GPUs. The nodes are interconnected via
two InfiniBand HDR adapters (https://www.mellanox.com/pdf/whitepapers/IB_Intro_
WP_190.pdf, accessed on 25 September 2024). The system peak performances for HAWK
and JURECA are 26 Petaflops and 3.54 (CPU) + 14.98 (GPU) Petaflops. The LES solver
uses CPUs for the computations, while the TR model uses GPUs. The comparison is made
based on the statistics for a single node. The LES computations are performed on 64 nodes,
while the TR inference uses one node. Assuming a perfect scaling, the wall-time on a single
node and memory usage are reported in Table 2. As can be seen, the inference time of
the TR is about 53 times faster than the time-marching step of the LES solver. In terms of
memory consumption as well, the TR is found to utilize almost 1100 times less resources.
These results show the excellent computational performance of the TR over the LES solver.
In practice, the computational gain achieved even with ∆tTR = 1 is significant for long
simulation times.

Table 2. Computational time per snapshot saved every 24 LES solver time step and total memory
usage of LES and TR.

LES TR

Wall-time (node seconds) 36.48 0.685

Memory (GiB) 466.69 0.422

5. Conclusions

A TR architecture was exploited to time-march velocity fields in a TBL flow problem.
The model is based on an encoder–decoder configuration, where a reconstruction strategy
was proposed to handle non-uniform inputs and reduce the computational complexity
of the self-attention mechanism. The TR-predicted fields were analyzed with the DMD
method, and a prediction error of less than 5% was achieved for a horizon of five future
TR time steps. Furthermore, a computational performance comparison between the LES
and the TR revealed that significant computational savings of up to about 53 times were
possible during inference, while consuming 1100 times less memory. This study provides a

https://www.hlrs.de/de/loesungen/systeme/hpe-apollo-hawk
https://www.hlrs.de/de/loesungen/systeme/hpe-apollo-hawk
https://www.amd.com/en/products/cpu/amd-epyc-7742
https://www.amd.com/en/products/cpu/amd-epyc-7742
https://www.mellanox.com/pdf/whitepapers/IB_Intro_WP_190.pdf
https://www.mellanox.com/pdf/whitepapers/IB_Intro_WP_190.pdf
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new strategy for achieving computational speed-ups for time-marching TBL fields with a
TR architecture in a hybrid setup with a traditional CFD solver.

Ongoing work is directed towards coupling the transformer model with the LES
solver in m-AIA. This involves checking physical plausibility by tracking possible physical
imbalances and also testing the acceleration of time-stepping operations for predicting
future velocity fields in a fully coupled scenario. The current work is intended towards
the design and optimization of the actuation parameters in the concerned TBL problem.
Therefore, future work is focused on examining how the transformer model generalizes
to different combinations of actuation parameters. However, if such a model is to be used
for a generic flow problem that is applicable across a wider range of Reynolds and Mach
numbers (the main factors influencing the flow conditions), future extensions to the TR
model will need to check for their generalizability across different flow conditions. Also,
more realistic setups such as airfoil simulations have to be considered, where, additionally,
the angle of attack as an influential factor will be introduced.
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